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It is shown that the phases of the partial matrix elements in the distorted-wave Born approximation, 
which are responsible for effects like forward and backward peaks in angular distributions, are closely related 
to the elastic scattering phase shifts for the entrance and exit channels and hence largely independent of the 
particular optical model used to calculate the wave functions. Phase considerations are used to verify the 
parity rule for even angular momentum transfer, and the conditions under which it is expected to hold are 
discussed. 

1. INTRODUCTION 

THE parity rule for inelastic scattering at small 
angles was discovered in numerical calculations 

by Glendenning1 and proved by Kromminga and 
McCarthy.2 In its most restricted form the rule states 
that if the Q value is zero, if the entrance and exit 
channel optical-model potentials are identical, if there 
is no space-exchange term in the interaction, and if the 
parity of the nuclear state is changed, the distorted-
wave Born approximation gives zero for the differential 
cross section for forward scattering. 

When the first three conditions hold approximately, 
the forward cross section is expected to be small, or at 
least to decrease as the scattering angle 6 approaches 
zero. Inelastic proton scattering experiments3 in which 
the parity is known to change have confirmed that at 
least the cross section decreases towards small angles. 
Cross sections have been observed down to about 15°. 
The decrease generally starts at about 30 or 40°. The 
effect is seen at larger angles with lighter incident 
particles because the momentum transfer is less and the 
differential cross section fluctuates less rapidly. 

It has also been observed that the differential cross 
section generally rises as the scattering angle approaches 
zero if the parity of the nucleus does not change and the 
Q value is not too large. If this is a general rule, it makes 
the parity rule a more effective tool for nuclear spec
troscopy since it would then be possible to say that a 
reaction with a decreasing forward cross section is 
definitely one which changes the parity. At present it is 
only possible to say that a reaction with an increasing 
forward cross section does not change the parity. 

The parity-changing (odd L) part of the rule is an 
exact selection rule involving the fact that, under the 
above adiabatic conditions, 

lL,l>l°=(-l)LI°L,ll> (1) 

* Supported by the U. S. Atomic Energy Commission. 
1 N. K. Glendenning, Phys. Rev. 114, 1297 (1959). 
2 A. J. Kromminga and I. E. McCarthy, Phys. Rev. Letters 6, 

62 (1961). 
3 For example, N. Hintz and T. Stovall, in University of Minne

sota Linear Accelerator Laboratory Annual Report, 1962 (un
published). 

where IL,U/0 is the partial matrix element in the dis
torted-wave Born approximation for the /th partial 
wave in the entrance channel and the /'th partial wave 
in the exit channel. The diagonal terms IL,U° do not 
contribute when the parity is changed because of the 
selection rule l+l'+L even. L is the angular momentum 
transfer. Only the M=0 components contribute for 
0=0. 

It was shown in Ref. 2 by means of a simple approxi
mation for the entrance and exit channel optical-model 
wave functions, which involved focusing, that the focus
ing is responsible for large forward cross sections for 
even L. 

In this note the conditions for the second part of the 
parity rule, namely, that forward cross sections are 
increasing towards zero scattering angle for even L, 
will be established. Unlike that for the first part of the 
rule, which is a clear-cut selection rule, the argument for 
the second part of the rule is approximate. It is slightly 
similar to the argument4 for the Blair phase rule5 for 
surface inelastic scattering. 

In Sec. 2 it will be shown that focusing is a general 
property of an elastic scattering wave function. It is a 
necessary consequence of the phase shifts for the partial 
waves. 

In Sec. 3 it will be shown under what circumstances 
the focusing property is expected to lead to large, or at 
least increasing, forward cross sections. 

2. FOCUSING AS A CONSEQUENCE OF 
REAL PHASE SHIFTS 

The optical-model wave function x(+)(k,r) will be 
written in the following way: 

* ( + ) ( V ) = £*i(p)-Pi(costf), (2) 

4 See, for example, N. Austern, in Selected Topics in Nuclear 
Theory (International Atomic Energy Agency, Vienna, 1963), 
p. 39. 

6 J. S. Blair, in Proceedings of the International Conference on 
Nuclear Structure, Kingston, edited by D. A. Bromley and E. W. 
Vogt (The University of Toronto Press, Toronto, 1960). 
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where 

P=kr, (3) 

xi(p) = il(2l+l)fi(p)exp(uri). (4) 

ai is the Coulomb phase shift. 
Normally, the form factor for the optical-model 

potential has zero derivative at the origin. The potential 
is flat in the middle. Hence, the solution to the radial 
Schrodinger equation at the origin is 

/z(p) = ii(p')exp(i0i), . (5) 
where 

P ' = * V , (6) 

&'= {(2m/h2) (E- V-iW)}1'2, (7) 

that is, the wave function at the origin is a spherical 
Bessel function in the flat internal potential except for a 
phase 4>h The phase $i is obtained by matching the 
internal solution to the asymptotic solution at a 
radius p0. 

fi(P)-Fl(p)+Cl\:Gl(p)+iFl(p)2. (8) 

Fi and Gi are the Coulomb functions, regular and 
irregular at the origin, respectively. Ci is given by 

e2i8i=2id+l, (9) 

where 8i is the phase shift. 
We will prove that <fo=5j. 
The matching condition for Ci is given by 

d=-B/(A+iB), (10) 

where A and B are the following Wronskians, calculated 
at the matching radius po. 

A = W(Ghfl), 
B = W(Fhfi). (11) 

From Eqs. (9) and (10), we obtain 

tand^-B/A. (12) 

The radial wave function is denned near the origin by 
ji{p') except for a phase factor exp(i<j>i). The normaliza
tion is given by matching internal and external solutions 
at po. 

exp(^0^{^(po)+C, [G z (po )+^(po) ]} / / z (po ) . (13) 

Using Eqs. (10), (11), and (13), we obtain 

tam4>i=-B/A. (14) 

Thus, it has been shown that the phase 4>i is the phase 
shift 8i. I t must be noted that when the potential is 
complex, <j>i is complex. j t (p') is also a complex number, 
so that the magnitude and phase of fi at the origin are 
given by ji(p) and <j>i(p), respectively, only for real 
potentials. The magnitude and phase of fi are close to 
the real parts of ji{pr) and <f>i(p) if W is small compared 
to E+ V, which is usually the case. 

This is a particular case of the well-known fact for 
potential scattering6 that 

^(V) = *zl/i(*)|-^(*V)^, (15) 

where fi*(k) = fi(—k) and fi(k) are Jost functions. 
fi(—k) is the Fredholm denominator of the integral 
equation for the Mi partial wave. gi(k2,r) is real. 

I t has been shown in a previous publication7 that the 
differences between the phases of successive partial 
waves near the nuclear surface are responsible for 
focusing. The phase of the Ith. partial wave near the 
first peak (i.e., for p=l), which gives the major contri
bution to the expansion (2) for x ( + ) , is nearly the same 
as it is at the origin.7 Hence, for the purpose of under
standing the interference of partial waves, we may 
consider the phase of the /th partial wave to be Re 5*. 

The argument for the focus may be summarized as 
follows. The differences between the phase shifts for 
partial waves of low I are small. The differences are 
large for surface partial waves, and again small for 
large /. At 0 = 0, the large differences in phase for suc
cessive surface partial waves cause constructive inter
ference for values of p near the surface. 

I t has thus been shown that focusing in an elastic 
scattering wave function is independent of any particu
lar model and is a property of the phase shifts. 

In Ref. 7 it has also been shown how focusing is 
responsible for qualitative features of angular distribu
tions such as backward peaks. 

3. FORWARD INELASTIC SCATTERING IN 
THE ADIABATIC LIMIT 

Using the distorted-wave Born approximation we 
will consider inelastic scattering in the approximation 
that the radial wave functions fi(p) and fi'(p) for the 
initial and final states are identical. 

Taking the case of spinless incident particles for 
simplicity, the differential cross section may be written 
in the usual notation as 

(da/dQ)(6)= W2Trh2)2(k'/k)i:w\ML
M(d)\2, (16) 

where, neglecting space exchange, 

ML
M(d) = ZivlL,wMYl^(d,0). (17) 

The selection rules are as follows: l-\-V-\-L even and 
/,/', L obey triangle inequalities. 

For forward scattering Yi>M(6fi) is zero for M^O. 
We may illustrate the argument by considering the 
relevant partial matrix element for a single-particle 
interaction. 

IL,ii>° = il-li J e^+^RivL^W+l)^^™)2 

* X < / / W | FL° | jlm), (18) 

6 R. G. Newton, J. Math. Phys. 1, 319 (1960). 
? L E. McCarthy, Phys. Rev. 128, 1237 (1962). 
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where 

Ru^j 
TABLE I. Phases of dominant terms in MLM (0). 

f*drMk/)fv(k,r)HL(r), 

HL(r)-
• / " 

W * M ' > L ( r / ) * i ( r ' ) . (19) 

The orbital, total, and projection angular momentum 
quantum numbers for the initial nuclear state are I, j , 
m, respectively, the radial wave function for the initial 
state is <t>i{rf), the primed quantum numbers indicate 
the final state and vL is the coefficient in the expansion 
of the two-body potential in spherical harmonics. 

Using the selection rule that l+l'+L is even, it is 
clear from Eqs. (18) and (19) that 

IL,I>?= (~ 1)LIL,W{ (20) 

For odd values of L, the (1,1') terms in the sum (16) 
exactly cancel the (/',/) terms. This is the first part of 
the parity rule. 

The second part of the rule is seen by considering the 
plane-wave case where we put 

This gives 
x(+) (k,r) = exp (ik« r). 

fi(p) = ji(p)> 

(21) 

(22) 

It is well known that for £ ^ 0 , ML
0:=Z0 in this case. 

Equation (17) may be written as 

Mz,°(0)= fr2drHL(r) 
- / 

X{Zivil-l,M2r+l)(ClLln
2ji(kr)jr(kr)} 

/2L+iy/2 

\ 4TT / 
(j7tn'\YL

0\jlni). (23) 

For JL=0, we have only the diagonal terms in the sum, 
which clearly add to give a large cross section. 

For Ly^Q and even, we have the diagonal terms in the 
sum plus terms close to the diagonal for small L. Since 
HL{T) is an arbitrary function, the integral is only zero 
if the sum is zero for all r. Thus the terms in the sum 
cancel, but in a complicated way that depends on r. 

At this stage we consider only the terms which con
tribute most to the integral, that is the terms for Z«X,8,9 

where X is the surface value of the angular momentum. 
The argument is now in the spirit of the argument for 
the Blair phase rule4 where an average over I values 
near X is considered. 

The important terms are 

A- l , \ - l J \ ,X , A+l ,\+l,I\—l ,X+1,I\ ,\~2,I\,X+2 , 

and terms with I and V interchanged. These terms are 

8 E . Rost, Phys. Rev. 128, 2708 (1962). 
9 K. A. Amos and I. E. McCarthy, Phys. Rev. 132, 2261 (1963). 

/ 

X - 1 
X 
X+l 
X - 2 
X 
X - 1 

/' 

X - 1 
X 
x+l 
X 
X+2 
X+l 

Plane waves 

0 
0 
0 
IT 

IT 

IT 

Phase 
Distorted waves 

2{h-i~h) 
0 
2(6 x + i -5x) 
7T + 5x_2 — 8\ 
7T + 5x+2 —S\ 
7r+5\_i+5x+ i — 28\ 

all real for plane waves and they add up to a small 
number, since the remaining terms are all small. Con
sider these terms as complex numbers in an Argand 
diagram. Table I shows their phases, taking the phase 
of ixx as zero. 

For distorted waves, making the approximation that 
the phase of fi where it contributes most to the integral 
is 5i, we can see from the last column of Table I how the 
phase shifts affect the cancellation. 

For protons with low (~20 MeV) energies, the dif
ferences between the phase shifts for successive surface 
partial waves can be about 45°. This causes some of the 
terms to change direction by large amounts relative to 
I\\. Thus we have constructive interference for dis
torted waves instead of the destructive interference for 
plane waves. 

For partial waves with low /, the most important 
contribution to the integral is from small r. Successive 
partial waves have similar phase shifts, so the inside of 
the nucleus does not contribute much to the forward 
cross section. This is not true at low energies where the 
surface I value, X, is itself small. In fact it is clear that 
the partial waves which contribute most to the forward 
cross section are the ones which are responsible for the 
focusing effects. The forward cross section, like the 
focus, is due to constructive interference between 
successive partial waves whose phases are very different. 
Since the phases of the partial waves are approximately 
equal to the phase shifts, it may be said that the forward 
inelastic scattering is a property of the phase shifts and 
not of a particular model. 

The condition for a large forward cross section is that 
for Z«X, 8i—8\ must be large enough for significant 
constructive interference. This condition is fulfilled for 
low- and medium-energy nucleons. 

For heavier ions the imaginary parts of the phase 
shifts are larger relative to the real parts, and the 
approximation that the phase of the partial wave is the 
real part of the phase shift is not such a good one. 
Numerical computations of a-particle inelastic scatter
ing10 show that the parity rule still holds for small 
enough Q values. In fact the even L cases show in
creasing cross sections as 6 approaches zero provided the 

10 R. H. Bassel, G. R. Satchler, R. M. Drisko, and E. Rost, 
Phys. Rev. 128, 2693 (1962). 
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Q value is less than about one-tenth of the incident 
energy. 

The case Z,=0 is slightly special. Here the phase 
shifts lessen the constructive interference that occurs 
for plane waves where only the diagonal terms IL,U0 

contribute to the sum. In all cases the forward cross 
section oscillates in magnitude as the energy increases. 
There will always be an energy at which it is large. 

Having discussed the conditions under which the 
forward cross section is expected to be large for even L 
and small for odd L, we must now discuss whether the 
cross section increases or decreases as 6 tends to zero. 

In the odd L case it is clear that the cross section is 
very small for cos0=l because of a cancellation. As 
1 —cos0 increases, the (l',l) terms in the sum (17) be
come different from the (I/) terms. The difference is 
responsible for the cross section and it increases as 6 
increases as long as the dominant spherical harmonics 
(those for Z'^X) remain approximately in phase. 

In the even L case the forward cross section is again 
due mainly to the addition of terms with l/^\ in the 
sum (17). These terms become smaller as 6 increases. 
The shape of the angular distribution is something like 
the average of P*(cos0) for Z«X. 

For larger 6 the contributions for Mf^O are not 
negligible. This also means that 0 must be quite small if 
the increase or decrease of the cross section is to be a 
useful indication of the parity change. 

For 44 MeV a-particle inelastic scattering with even 
L, the characteristic increase occurs in numerical calcu
lations10 only for angles less than 5°. X in this case is 
about 10. For proton scattering at 10-20 MeV, X is 

about 4 or 5 so the characteristic increase can be seen 
at larger angles. 

4. CONCLUSIONS 

It has been shown in Sec. 3 how the phases of the 
partial waves are responsible for large forward cross 
sections in the case of even L^O. In earlier publica
tions7,9 it was shown how the phases also can be easily 
seen to control the backward cross sections. Blair11 has 
given a very simple illustration of this fact by showing 
that just reversing the phase of one contribution to the 
matrix element from a surface reaction can change the 
angular distribution from an over-all increase towards 
forward angles to an over-all increase towards backward 
angles. 

The result to be stressed is that of Sec. 2 which shows 
that these quite detailed considerations of angular 
distributions are directly related to the elastic scattering 
phase shifts for the entrance and exit channels and are 
not expected to depend on the particular model used to 
calculate the elastic scattering wave function. A dis
persion-relation calculation as suggested by Kaminsky 
and Orlov12 in which distortion is introduced only by the 
phase shifts must presumably lead to qualitatively 
similar angular distributions. 

The important practical result is that the parity rule 
is now established for even L as well as for odd L. 

11 J. S. Blair, in Direct Interactions and Nuclear Reaction Mech
anisms (Gordon and Breach Publishers, Inc., New York, 1963), 
p. 1165. 

12 V. A. Kaminsky and Yu. V. Orlov, Nucl. Phys. 43, 236 
(1963); 48, 375 (1963). 


